If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-14k-30=0
a = 1; b = -14; c = -30;
Δ = b2-4ac
Δ = -142-4·1·(-30)
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{79}}{2*1}=\frac{14-2\sqrt{79}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{79}}{2*1}=\frac{14+2\sqrt{79}}{2} $
| 2a+37=4a+27 | | -6-3v=8v+33 | | y=2(5-2)-6 | | (x+4)÷4=6x= | | (x+4)÷4=6 | | 2/3x-1=x | | 4(3x–2)–4=–2(–5x–1) | | 2.4x=32 | | 5,4-1,5x=0,3x-3,6 | | −10x=6 | | 0,3=−y+3,8−5,4 | | 1xx4+44=1xx8-12 | | 3(x-5)=-4(2x-3) | | 2x+4=-4(x-2) | | 2(3w+10)/4=6 | | 5x-10±3x±12=8x±2 | | 3x+2x/180=x | | 1xx4+44=1xx-12 | | 1,5x+0,3=0,7x-9 | | 2(6w+10)/4=6 | | 3.3x=8 | | 3(x+8)^2−20=28 | | 3(x+8)2−20=28 | | 3x-15=-8x+12+15 | | 3x-1+5=2x | | 3^(x+2)+5*3^x-4*3^(x-1)=342 | | 2(w+10)/4=6 | | 12-4y=2(y+60 | | 4x-2=6+7 | | -8x+3=-53 | | 0.5x^2+3x+2.5=0 | | 3x+20=20=5x-8 |